

(Pages: 3)

Reg. No.:

Third Semester B.Tech. Degree Examination, January 2015 (2008 Scheme)

08.302 : SOLID STATE DEVICES (TA)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

- 1. Prove that the charge carrier "hole" has positive charge.
- 2. Show that $f(E_F + \Delta E) = 1 f(E_F \Delta E)$, where f(E) is the fermi function.
- 3. A silicon sample is doped with 10¹⁶ boron atoms per cm³ and a certain number of donors. If the fermi level is 0.36 eV above Ei at 300 K, what is the donor concentration N_d?
- 4. What are quasi Fermi levels? Explain their significance.
- 5. Derive an expression for the diffusion capacitance in a p+n Junction.
- Draw the Energy Band diagram of an ideal hetero junction between a p type wide band gap semiconductor and n type narrower band gap semiconductor at equilibrium.
- 7. Explain base width modulation in a BJT, How does it affect various parameters of the BJT.
- 8. A P channel Si JFET has channel doping $Na = 10^{15}$ cm⁻³ and gate doping $Nd = 10^{17}$ cm⁻³ and width of the channel 2a = 4 microns. Determine pinch off voltage.

- Draw the structure of a MOS capacitor in which the semiconductor is p type silicon. Draw its Energy Band diagram when it is in depletion condition.
- Draw the structure of a UJT. What is intrinsic stand off ratio. Write one application of UJT.

 (10×4=40 Marks)

PART - B

Answer any two questions from each Module. Each question carries 10 marks.

Module - I

- Derive the steady state continuity equation. Assume that the only carrier transport mechanism is diffusion.
- Derive expressions for the equilibrium carrier concentrations in an extrinsic semiconductor.
- 13. What is Hall effect? Explain how the carrier concentration in a semiconductor and carrier mobility can be found out experimentally.

Module - II

- 14. Explain Zener and Avalanche break down mechanisms with the help of relevant diagrams. Explain why a zener diode can be used for regulation application.
- 15. Derive expressions for
 - a) Electric field distribution in the depletion region
 - b) Width of the depletion region and
 - c) Built-in-potential of a linearly graded pn junction at equilibrium.
- 16. Derive expressions for the terminal currents of a pnp transistor. State the approximations used.

Module - III

- 17. Derive expressions for the drain current of a JFET. What are the approximations used?
- 18. a) Derive an expression for the threshold voltage of an ideal MOS capacitor.
 - b) Draw the structure of:
 - i) n channel enhancement MOSFET and
 - ii) p channel depletion MOSFET.

- 19. With the help of suitable diagrams explain the principle of operation of
 - i) SCR and
 - ii) IGBT.

[Given KT = 0.0259 eVat 300 K \in_r = 11.8 \in_o = 8.85 × 10⁻¹⁴ F/cm, n_i = 1.5×10¹⁰ cm⁻³ at 300 K] q = 1.6 × 10⁻¹⁹ C.